A revolução invisível: o papel crucial da microbiota na saúde humana
«Em indivíduos saudáveis, a composição da microbiota intestinal permanece relativamente estável e semelhante entre indivíduos da mesma região ou com dieta semelhante.»
O ecossistema intestinal humano é um ambiente complexo, essencial para a saúde, suportado por uma comunidade bacteriana dinâmica. A microbiota intestinal coopera simbioticamente com o hospedeiro desde o nascimento, influenciando diversas funções metabólicas e imunitárias.
A disbiose, um desequilíbrio na microbiota, está associada a uma variedade de doenças, incluindo distúrbios digestivos, doenças cardiovasculares e autoimunidade. Este desequilíbrio promove o crescimento de bactérias produtoras de toxinas, perturbando a homeostase do organismo e desencadeando inflamação.
Fatores como genética, dieta e medicamentos influenciam a diversidade da microbiota intestinal.
Diversas estratégias terapêuticas, incluindo probióticos, prebióticos e dietas específicas, têm sido propostas para lidar com a disbiose e promover a saúde intestinal.
Esta revisão explora intervenções nutricionais para modular a microbiota intestinal e potencialmente beneficiar os pacientes. (...)
Por Lara Pires 1,2,3, Ana M. González-Paramás 3,
Sandrina A. Heleno 1,2, Márcio Carocho 1,2, Ricardo C. Calhelha 1,2
1 Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança
2 Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC),
Instituto Politécnico de Bragança
3 Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana,
Facultad de Farmacia, Universidad de Salamanca
Leia o artigo publicado em duas partes nas edições nº 40 e 41 da TecnoAlimentar
Bibliografia
AbuMweis, S. S., Marinangeli, C. P. F., Frohlich, J., & Jones, P. J. H. (2014). Implementing Phytosterols Into Medical Practice as a Cholesterol-Lowering Strategy: Overview of Efficacy, Effectiveness, and Safety. Canadian Journal of Cardiology, 30(10), 1225–1232. https://doi.org/10.1016/J.CJCA.2014.04.022
Aguilar-Toalá, J. E., Garcia-Varela, R., Garcia, H. S., Mata-Haro, V., González-Córdova, A. F., Vallejo-Cordoba, B., & Hernández-Mendoza, A. (2018). Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology, 75, 105–114. https://doi.org/10.1016/j.tifs.2018.03.009
Alegre, M. L., Mannon, R. B., & Mannon, P. J. (2014). The microbiota, the immune system and the allograft. In American Journal of Transplantation (Vol. 14, Issue 6, pp. 1236–1248). Blackwell Publishing Ltd. https://doi.org/10.1111/ajt.12760
Anhê, F. F., Pilon, G., Roy, D., Desjardins, Y., Levy, E., & Marette, A. (2016). Triggering Akkermansia with dietary polyphenols: A new weapon to combat the metabolic syndrome? Gut Microbes, 7(2), 146–153. https://doi.org/10.1080/19490976.2016.1142036
Anhê, F. F., Varin, T. V., Le Barz, M., Desjardins, Y., Levy, E., Roy, D., & Marette, A. (2015). Gut Microbiota Dysbiosis in Obesity-Linked Metabolic Diseases and Prebiotic Potential of Polyphenol-Rich Extracts. Current Obesity Reports, 4(4), 389–400. https://doi.org/10.1007/s13679-015-0172-9
Appanna, V. D. (2018). Dysbiosis, Probiotics, and Prebiotics: In Diseases and Health. In Human Microbes - The Power Within (pp. 81–122). Springer Singapore. https://doi.org/10.1007/978-981-10-7684-8_3
Aron-Wisnewsky, J., Vigliotti, C., Witjes, J., Thi Le, P., Holleboom, A. G., Verheij, J., Nieuwdorp, M., & Clément, K. (n.d.). Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nature Reviews. Gastroenterology & Hepatology, 2020(5). https://doi.org/10.1038/s41575-020-0269
Barrea, L., Annunziata, G., Muscogiuri, G., Di Somma, C., Laudisio, D., Maisto, M., de Alteriis, G., Tenore, G. C., Colao, A., & Savastano, S. (2018). Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome. Nutrients, 10(12). https://doi.org/10.3390/nu10121971
Black, A. P., Anjos, J. S., Cardozo, L., Carmo, F. L., Dolenga, C. J., Nakao, L. S., de Carvalho Ferreira, D., Rosado, A., Carraro Eduardo, J. C., & Mafra, D. (2018). Does Low-Protein Diet Influence the Uremic Toxin Serum Levels From the Gut Microbiota in Nondialysis Chronic Kidney Disease Patients? Journal of Renal Nutrition, 28(3), 208–214. https://doi.org/10.1053/j.jrn.2017.11.007
Borges, N. A., Carmo, F. L., Stockler-Pinto, M. B., de Brito, J. S., Dolenga, C. J., Ferreira, D. C., Nakao, L. S., Rosado, A., Fouque, D., & Mafra, D. (2018). Probiotic Supplementation in Chronic Kidney Disease: A Double-blind, Randomized, Placebo-controlled Trial. Journal of Renal Nutrition, 28(1), 28–36. https://doi.org/10.1053/j.jrn.2017.06.010
Bourebaba, Y., Marycz, K., Mularczyk, M., & Bourebaba, L. (2022). Postbiotics as potential new therapeutic agents for metabolic disorders management. In Biomedicine and Pharmacotherapy (Vol. 153). Elsevier Masson s.r.l. https://doi.org/10.1016/j.biopha.2022.113138
Brown, J. M., & Hazen, S. L. (2015). The gut microbial endocrine organ: Bacterially derived signals driving cardiometabolic diseases. Annual Review of Medicine, 66, 343–359. https://doi.org/10.1146/annurev-med-060513-093205
Cenit, M. C., Nuevo, I. C., Codoñer-Franch, P., Dinan, T. G., & Sanz, Y. (2017). Gut microbiota and attention deficit hyperactivity disorder: new perspectives for a challenging condition. In European Child and Adolescent Psychiatry (Vol. 26, Issue 9, pp. 1081–1092). Dr. Dietrich Steinkopff Verlag GmbH and Co. KG. https://doi.org/10.1007/s00787-017-0969-z
Choy, Y. Y., Quifer-Rada, P., Holstege, D. M., Frese, S. A., Calvert, C. C., Mills, D. A., Lamuela-Raventos, R. M., & Waterhouse, A. L. (2014). Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocyanidins. Food Funct., 5(9), 2298–2308. https://doi.org/10.1039/C4FO00325J
Cicero, A. F. G., Fogacci, F., & Colletti, A. (2017). Food and plant bioactives for reducing cardiometabolic disease risk: an evidence based approach. Food & Function, 8(6), 2076–2088. https://doi.org/10.1039/C7FO00178A
Cigarran Guldris, S., González Parra, E., & Cases Amenós, A. (2017). Microbiota intestinal en la enfermedad renal crónica. In Nefrologia (Vol. 37, Issue 1, pp. 9–19). Elsevier Espana S.L. https://doi.org/10.1016/j.nefro.2016.05.008
Croci, S., D’apolito, L. I., Gasperi, V., Catani, M. V., & Savini, I. (2021). Dietary strategies for management of metabolic syndrome: Role of gut microbiota metabolites. In Nutrients (Vol. 13, Issue 5). MDPI AG. https://doi.org/10.3390/nu13051389
DAS, B., & Nair, G. B. (2019). Homeostasis and dysbiosis of the gut microbiome in health and disease. In Journal of biosciences (Vol. 44, Issue 5). NLM (Medline). https://doi.org/10.1007/s12038-019-9926-y
De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., Collini, S., Pieraccini, G., & Lionetti, P. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14691–14696. https://doi.org/10.1073/pnas.1005963107
Del Chierico, F., Vernocchi, P., Dallapiccola, B., & Putignani, L. (2014). Mediterranean diet and health: Food effects on gut microbiota and disease control. In International Journal of Molecular Sciences (Vol. 15, Issue 7, pp. 11678–11699). MDPI AG. https://doi.org/10.3390/ijms150711678
Dudek-Wicher, R. K., Junka, A., & Bartoszewicz, M. (2018). The influence of antibiotics and dietary components on gut microbiota. Gastroenterology Review, 13(2), 85–92. https://doi.org/10.5114/pg.2018.76005
Eidi, F., Poor -reza Gholi, F., Ostadrahimi, A., Dalili, N., Samadian, F., & Barzegari, A. (2018). Effect of Lactobacillus Rhamnosus on serum uremic toxins (phenol and P-Cresol) in hemodialysis patients: A double blind randomized clinical trial. Clinical Nutrition ESPEN, 28, 158–164. https://doi.org/10.1016/j.clnesp.2018.08.010
Esgalhado, M., Kemp, J. A., Azevedo, R., Paiva, B. R., Stockler-Pinto, M. B., Dolenga, C. J., Borges, N. A., Nakao, L. S., & Mafra, D. (2018). Could resistant starch supplementation improve inflammatory and oxidative stress biomarkers and uremic toxins levels in hemodialysis patients? A pilot randomized controlled trial. Food & Function, 9(12), 6508–6516. https://doi.org/10.1039/C8FO01876F
Esposito, D., Damsud, T., Wilson, M., Grace, M. H., Strauch, R., Li, X., Lila, M. A., & Komarnytsky, S. (2015). Black Currant Anthocyanins Attenuate Weight Gain and Improve Glucose Metabolism in Diet-Induced Obese Mice with Intact, but Not Disrupted, Gut Microbiome. Journal of Agricultural and Food Chemistry, 63(27), 6172–6180. https://doi.org/10.1021/acs.jafc.5b00963
Evenepoel, P., Meijers, B. K. I., Bammens, B. R. M., & Verbeke, K. (2009). Uremic toxins originating from colonic microbial metabolism. In Kidney International (Vol. 76, Issue SUPPL. 114). Nature Publishing Group. https://doi.org/10.1038/ki.2009.402
Fang, J. (2014). Bioavailability of anthocyanins. Drug Metabolism Reviews, 46(4), 508–520. https://doi.org/10.3109/03602532.2014.978080
Fujio-Vejar, S., Vasquez, Y., Morales, P., Magne, F., Vera-Wolf, P., Ugalde, J. A., Navarrete, P., & Gotteland, M. (2017). The gut microbiota of healthy Chilean subjects reveals a high abundance of the phylum Verrucomicrobia. Frontiers in Microbiology, 8(JUN). https://doi.org/10.3389/fmicb.2017.01221
Gallego, C. G., & Salminen, S. (2016). Novel Probiotics and Prebiotics: How Can They Help in Human Gut Microbiota Dysbiosis? Review Article APPLIED FOOD BIOTECHNOLOGY, 3(2), 72–81. www.journals.sbmu.ac.ir/afb
Geuking, M. B., McCoy, K. D., & Macpherson, A. J. (2012). The function of secretory IgA in the context of the intestinal continuum of adaptive immune responses in host-microbial mutualism. In Seminars in Immunology (Vol. 24, Issue 1, pp. 36–42). https://doi.org/10.1016/j.smim.2011.11.005
Gevers, D., Knight, R., Petrosino, J. F., Huang, K., McGuire, A. L., Birren, B. W., Nelson, K. E., White, O., Methé, B. A., & Huttenhower, C. (2012). The Human Microbiome Project: A Community Resource for the Healthy Human Microbiome. PLoS Biology, 10(8). https://doi.org/10.1371/journal.pbio.1001377
Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. In Nature Reviews Gastroenterology and Hepatology (Vol. 14, Issue 8, pp. 491–502). Nature Publishing Group. https://doi.org/10.1038/nrgastro.2017.75
Gibson, G. R., & Roberfroid, M. B. (1995). Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. The Journal of Nutrition, 125(6), 1401–1412. https://doi.org/10.1093/jn/125.6.1401
Grice, E. A., & Segre, J. A. (2012). The human microbiome: Our second genome. In Annual Review of Genomics and Human Genetics (Vol. 13, pp. 151–170). https://doi.org/10.1146/annurev-genom-090711-163814
Gupta, M. K.?; V. R. S. V. (2019). Curcumin - A Novel Therapeutic Agent in the Prevention of Colorectal Cancer. Current Drug Metabolism, 20(12), 977–987.
Heiss, C. N., & Olofsson, L. E. (2018). Gut Microbiota-Dependent Modulation of Energy Metabolism. In Journal of Innate Immunity (Vol. 10, Issue 3, pp. 163–171). S. Karger AG. https://doi.org/10.1159/000481519
Hills, R. D., Pontefract, B. A., Mishcon, H. R., Black, C. A., Sutton, S. C., & Theberge, C. R. (2019). Gut microbiome: Profound implications for diet and disease. Nutrients, 11(7). https://doi.org/10.3390/nu11071613
Hooper, L. V., & MacPherson, A. J. (2010). Immune adaptations that maintain homeostasis with the intestinal microbiota. In Nature Reviews Immunology (Vol. 10, Issue 3, pp. 159–169). https://doi.org/10.1038/nri2710
Jayasudha, R., Das, T., Chakravarthy, S. K., Prashanthi, G. S., Bhargava, A., Tyagi, M., Rani, P. K., Pappuru, R. R., & Shivaji, S. (2020). Gut mycobiomes are altered in people with type 2 diabetes mellitus and diabetic retinopathy. PLoS ONE, 15(12 December). https://doi.org/10.1371/journal.pone.0243077
Kazemian, N., Mahmoudi, M., Halperin, F., Wu, J. C., & Pakpour, S. (2020). Gut microbiota and cardiovascular disease: Opportunities and challenges. In Microbiome (Vol. 8, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s40168-020-00821-0
Khader, S. A., Gaffen, S. L., & Kolls, J. K. (2009). Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. In Mucosal Immunology (Vol. 2, Issue 5, pp. 403–411). https://doi.org/10.1038/mi.2009.100
Khalili, L., Alipour, B., Asghari Jafarabadi, M., Hassanalilou, T., Mesgari Abbasi, M., & Faraji, I. (2019). Probiotic assisted weight management as a main factor for glycemic control in patients with type 2 diabetes: A randomized controlled trial. In Diabetology and Metabolic Syndrome (Vol. 11, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13098-019-0400-7
Koppe, L., Mafra, D., & Fouque, D. (2015). Probiotics and chronic kidney disease. In Kidney International (Vol. 88, Issue 5, pp. 958–966). Nature Publishing Group. https://doi.org/10.1038/ki.2015.255
Larsen, N., Vogensen, F. K., Van Den Berg, F. W. J., Nielsen, D. S., Andreasen, A. S., Pedersen, B. K., Al-Soud, W. A., Sørensen, S. J., Hansen, L. H., & Jakobsen, M. (2010). Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE, 5(2). https://doi.org/10.1371/journal.pone.0009085
Larsson, E., Tremaroli, V., Lee, Y. S., Koren, O., Nookaew, I., Fricker, A., Nielsen, J., Ley, R. E., & Bäckhed, F. (2012). Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut, 61(8), 1124–1131. https://doi.org/10.1136/gutjnl-2011-301104
Lau, W. L., Kalantar-Zadeh, K., & Vaziri, N. D. (2015). The Gut as a Source of Inflammation in Chronic Kidney Disease. Nephron, 130(2), 92–98. https://doi.org/10.1159/000381990
Liébana-García, R., Olivares, M., Bullich-Vilarrubias, C., López-Almela, I., Romaní-Pérez, M., & Sanz, Y. (2021). The gut microbiota as a versatile immunomodulator in obesity and associated metabolic disorders. In Best Practice and Research: Clinical Endocrinology and Metabolism (Vol. 35, Issue 3). Bailliere Tindall Ltd. https://doi.org/10.1016/j.beem.2021.101542
Litvak, Y., & Bäumler, A. J. (2019). Microbiota-Nourishing Immunity: A Guide to Understanding Our Microbial Self. In Immunity (Vol. 51, Issue 2, pp. 214–224). Cell Press. https://doi.org/10.1016/j.immuni.2019.08.003
Ludwig, D. S., Astrup, A., Bazzano, L. A., Ebbeling, C. B., Heymsfield, S. B., King, J. C., & Willett, W. C. (2019). Ultra-Processed Food and Obesity: The Pitfalls of Extrapolation from Short Studies. Cell Metabolism, 30(1), 3–4. https://doi.org/10.1016/j.cmet.2019.06.004
Maier, L., Pruteanu, M., Kuhn, M., Zeller, G., Telzerow, A., Anderson, E., Brochado, A. R., Fernandez, K. C., Dose, H., Mori, H., Raosaheb Patil, K., & Typas, A. (2018). Extensive impact of non-antibiotic drugs on human gut bacteria Europe PMC Funders Group. Nature, 555(7698), 623–628. https://doi.org/10.6084/m9.figshare.4813882
Malard, F., Dore, J., Gaugler, B., & Mohty, M. (2021). Introduction to host microbiome symbiosis in health and disease. In Mucosal Immunology (Vol. 14, Issue 3, pp. 547–554). Springer Nature. https://doi.org/10.1038/s41385-020-00365-4
Markowiak, P., & Slizewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. In Nutrients (Vol. 9, Issue 9). MDPI AG. https://doi.org/10.3390/nu9091021
Martel, J., Chang, S. H., Ko, Y. F., Hwang, T. L., Young, J. D., & Ojcius, D. M. (2022). Gut barrier disruption and chronic disease. In Trends in Endocrinology and Metabolism (Vol. 33, Issue 4, pp. 247–265). Elsevier Inc. https://doi.org/10.1016/j.tem.2022.01.002
Mazloom, K., Siddiqi, I., & Covasa, M. (2019). Probiotics: How effective are they in the fight against obesity? In Nutrients (Vol. 11, Issue 2). MDPI AG. https://doi.org/10.3390/nu11020258
McFarlane, C., Ramos, C. I., Johnson, D. W., & Campbell, K. L. (2019). Prebiotic, Probiotic, and Synbiotic Supplementation in Chronic Kidney Disease: A Systematic Review and Meta-analysis. Journal of Renal Nutrition, 29(3), 209–220. https://doi.org/10.1053/j.jrn.2018.08.008
Mosca, A., Abreu Y Abreu, A. T., Gwee, K. A., Ianiro, G., Tack, J., Nguyen, T. V. H., & Hill, C. (2022). The clinical evidence for postbiotics as microbial therapeutics. In Gut Microbes (Vol. 14, Issue 1). Taylor and Francis Ltd. https://doi.org/10.1080/19490976.2022.2117508
Most, J., Penders, J., Lucchesi, M., Goossens, G. H., & Blaak, E. E. (2017). Gut microbiota composition in relation to the metabolic response to 12-week combined polyphenol supplementation in overweight men and women. European Journal of Clinical Nutrition, 71(9), 1040–1045. https://doi.org/10.1038/ejcn.2017.89
Na-Ri Shin * Tae Woong Whon * Jin-Woo Bae. (2015). Proteobacteria: microbial signature of dysbiosis in gut microbiota. Digestive and Liver Diseases, 33(9), 495–503.
Novakovic, M., Rout, A., Kingsley, T., Kirchoff, R., Singh, A., Verma, V., Kant, R., & Chaudhary, R. (2020). Role of gut microbiota in cardiovascular diseases. In World Journal of Cardiology (Vol. 12, Issue 4, pp. 110–122). Baishideng Publishing Group Co. https://doi.org/10.4330/wjc.v12.i4.110
O’Hara, A. M., & Shanahan, F. (2006). The gut flora as a forgotten organ. In EMBO Reports (Vol. 7, Issue 7, pp. 688–693). https://doi.org/10.1038/sj.embor.7400731
Ohno, M., Nishida, A., Sugitani, Y., Nishino, K., Inatomi, O., Sugimoto, M., Kawahara, M., & Andoh, A. (2017). Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells. PLoS ONE, 12(10). https://doi.org/10.1371/journal.pone.0185999
Olveira, G., & González-Molero, I. (2016). Actualización de probióticos, prebióticos y simbióticos en nutrición clínica. Endocrinología y Nutrición, 63(9), 482–494. https://doi.org/10.1016/j.endonu.2016.07.006
Ottman, N., Geerlings, S. Y., Aalvink, S., de Vos, W. M., & Belzer, C. (2017). Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Practice & Research Clinical Gastroenterology, 31(6), 637–642. https://doi.org/10.1016/J.BPG.2017.10.001
Palmer, C., Bik, E. M., Digiulio, D. B., Relman, D. A., & Brown, P. O. (2007). Development of the human infant intestinal microbiota. PLoS Biol, 5(7), 177. https://doi.org/10.1371/journal.pbio
Petrova, P., & Petrov, K. (2017). Prebiotic-Probiotic Relationship: The Genetic Fundamentals of Polysaccharides Conversion by Bifidobacterium and Lactobacillus Genera. In Food Bioconversion (Vol. 2, pp. 237–278). Elsevier. https://doi.org/10.1016/B978-0-12-811413-1.00007-3
Ramakrishna, B. S. (2013). Role of the gut microbiota in human nutrition and metabolism. Journal of Gastroenterology and Hepatology (Australia), 28(S4), 9–17. https://doi.org/10.1111/jgh.12294
Régnier, M., van Hul, M., Knauf, C., & Cani, P. D. (2021). Gut microbiome, endocrine control of gut barrier function and metabolic diseases. In Journal of Endocrinology (Vol. 248, Issue 2, pp. R67–R82). BioScientifica Ltd. https://doi.org/10.1530/JOE-20-0473
Roopchand, D. E., Carmody, R. N., Kuhn, P., Moskal, K., Rojas-Silva, P., Turnbaugh, P. J., & Raskin, I. (2015). Dietary polyphenols promote growth of the gut bacterium akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes, 64(8), 2847–2858. https://doi.org/10.2337/db14-1916
Rossi, M., Johnson, D. W., Morrison, M., Pascoe, E. M., Coombes, J. S., Forbes, J. M., Szeto, C. C., McWhinney, B. C., Ungerer, J. P. J., & Campbell, K. L. (2016). Synbiotics easing renal failure by improving gut microbiology (SYNERGY): A randomized trial. Clinical Journal of the American Society of Nephrology, 11(2), 223–231. https://doi.org/10.2215/CJN.05240515
Sabatino, A., Regolisti, G., Brusasco, I., Cabassi, A., Morabito, S., & Fiaccadori, E. (2015). Alterations of intestinal barrier and microbiota in chronic kidney disease. In Nephrology Dialysis Transplantation (Vol. 30, Issue 6, pp. 924–933). Oxford University Press. https://doi.org/10.1093/ndt/gfu287
Salmean, Y. A., Segal, M. S., Palii, S. P., & Dahl, W. J. (2015). Fiber Supplementation Lowers Plasma p-Cresol in Chronic Kidney Disease Patients. Journal of Renal Nutrition, 25(3), 316–320. https://doi.org/10.1053/j.jrn.2014.09.002
Sánchez, B., Delgado, S., Blanco-Míguez, A., Lourenço, A., Gueimonde, M., & Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition & Food Research, 61(1). https://doi.org/10.1002/mnfr.201600240
Sanz, Y., Olivares, M., Moya-Pérez, Á., & Agostoni, C. (2015). Understanding the role of gut microbiome in metabolic disease risk. In Pediatric Research (Vol. 77, pp. 236–244). Nature Publishing Group. https://doi.org/10.1038/pr.2014.170
Saxami, G., Kerezoudi, E. N., Eliopoulos, C., Arapoglou, D., & Kyriacou, A. (2023). The Gut–Organ Axis within the Human Body: Gut Dysbiosis and the Role of Prebiotics. Life, 13(10), 2023. https://doi.org/10.3390/life13102023
Shen, L., Liu, L., & Ji, H. F. (2017). Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications. Food and Nutrition Research, 61. https://doi.org/10.1080/16546628.2017.1361780
Shi, Z. (2019). Gut microbiota: An important link between western diet and chronic diseases. In Nutrients (Vol. 11, Issue 10). MDPI AG. https://doi.org/10.3390/nu11102287
Shkoporov, A. N., & Hill, C. (2019). Bacteriophages of the Human Gut: The “Known Unknown” of the Microbiome. In Cell Host and Microbe (Vol. 25, Issue 2, pp. 195–209). Cell Press. https://doi.org/10.1016/j.chom.2019.01.017
Siciliano, R. A., & Mazzeo, M. F. (2012). Molecular mechanisms of probiotic action: a proteomic perspective. Current Opinion in Microbiology, 15(3), 390–396. https://doi.org/10.1016/j.mib.2012.03.006
Singh, R., Chandrashekharappa, S., Bodduluri, S. R., Baby, B. V., Hegde, B., Kotla, N. G., Hiwale, A. A., Saiyed, T., Patel, P., Vijay-Kumar, M., Langille, M. G. I., Douglas, G. M., Cheng, X., Rouchka, E. C., Waigel, S. J., Dryden, G. W., Alatassi, H., Zhang, H.-G., Haribabu, B., … Jala, V. R. (2019). Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nature Communications, 10(1), 89. https://doi.org/10.1038/s41467-018-07859-7
Sirisinha, S. (2016). The potential impact of gut microbiota on your health: Current status and future challenges. In Asian Pacific Journal of Allergy and Immunology (Vol. 34, Issue 4, pp. 249–264). Allergy and Immunology Society of Thailand. https://doi.org/10.12932/AP0803
Slavin, J. (2013). Fiber and prebiotics: Mechanisms and health benefits. In Nutrients (Vol. 5, Issue 4, pp. 1417–1435). MDPI AG. https://doi.org/10.3390/nu5041417
Sonnenburg, J. L., & Bäckhed, F. (2016). Diet–microbiota interactions as moderators of human metabolism. Nature, 535(7610), 56–64. https://doi.org/10.1038/nature18846
Spanogiannopoulos, P., Bess, E. N., Carmody, R. N., & Turnbaugh, P. J. (2016). The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism. In Nature Reviews Microbiology (Vol. 14, Issue 5, pp. 273–287). Nature Publishing Group. https://doi.org/10.1038/nrmicro.2016.17
Stubbs, J. R., House, J. A., Ocque, A. J., Zhang, S., Johnson, C., Kimber, C., Schmidt, K., Gupta, A., Wetmore, J. B., Nolin, T. D., Spertus, J. A., & Yu, A. S. (2016). Serum Trimethylamine-N-Oxide is Elevated in CKD and Correlates with Coronary Atherosclerosis Burden. Journal of the American Society of Nephrology, 27(1), 305–313. https://doi.org/10.1681/ASN.2014111063
Taki, K., Takayama, F., & Niwa, T. (2005). Beneficial effects of Bifidobacteria in a gastroresistant seamless capsule on hyperhomocysteinemia in hemodialysis patients. Journal of Renal Nutrition, 15(1), 77–80. https://doi.org/10.1053/j.jrn.2004.09.028
Tang, J., Wei, Y., Pi, C., Zheng, W., Zuo, Y., Shi, P., Chen, J., Xiong, L., Chen, T., Liu, H., Zhao, Q., Yin, S., Ren, W., Cao, P., Zeng, N., & Zhao, L. (2023). The therapeutic value of bifidobacteria in cardiovascular disease. In npj Biofilms and Microbiomes (Vol. 9, Issue 1). Nature Research. https://doi.org/10.1038/s41522-023-00448-7
Tang, W. H. W., Kitai, T., & Hazen, S. L. (2017a). Gut microbiota in cardiovascular health and disease. In Circulation Research (Vol. 120, Issue 7, pp. 1183–1196). Lippincott Williams and Wilkins. https://doi.org/10.1161/CIRCRESAHA.117.309715
Tang, W. H. W., Kitai, T., & Hazen, S. L. (2017b). Gut microbiota in cardiovascular health and disease. In Circulation Research (Vol. 120, Issue 7, pp. 1183–1196). Lippincott Williams and Wilkins. https://doi.org/10.1161/CIRCRESAHA.117.309715
Thorakkattu, P., Khanashyam, A. C., Shah, K., Babu, K. S., Mundanat, A. S., Deliephan, A., Deokar, G. S., Santivarangkna, C., & Nirmal, N. P. (2022). Postbiotics: Current Trends in Food and Pharmaceutical Industry. In Foods (Vol. 11, Issue 19). MDPI. https://doi.org/10.3390/foods11193094
Tremaroli, V., Karlsson, F., Werling, M., Ståhlman, M., Kovatcheva-Datchary, P., Olbers, T., Fändriks, L., Le Roux, C. W., Nielsen, J., & Bäckhed, F. (2015). Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. Cell Metabolism, 22(2), 228–238. https://doi.org/10.1016/j.cmet.2015.07.009
Ursell, L. K., Metcalf, J. L., Parfrey, L. W., & Knight, R. (2012). Defining the human microbiome. Nutrition Reviews, 70(SUPPL. 1). https://doi.org/10.1111/j.1753-4887.2012.00493.x
Valcheva, R., & Dieleman, L. A. (2016). Prebiotics: Definition and protective mechanisms. Best Practice & Research Clinical Gastroenterology, 30(1), 27–37. https://doi.org/10.1016/j.bpg.2016.02.008
Vaziri, N. D. (2012). CKD impairs barrier function and alters microbial flora of the intestine: A major link to inflammation and uremic toxicity. In Current Opinion in Nephrology and Hypertension (Vol. 21, Issue 6, pp. 587–592). https://doi.org/10.1097/MNH.0b013e328358c8d5
Vaziri, N. D. (2016). Effect of synbiotic therapy on gut–derived uremic toxins and the intestinal microbiome in patients with CKD. In Clinical Journal of the American Society of Nephrology (Vol. 11, Issue 2, pp. 199–201). American Society of Nephrology. https://doi.org/10.2215/CJN.13631215
Witkowski, M., Weeks, T. L., & Hazen, S. L. (2020). Gut Microbiota and Cardiovascular Disease. In Circulation Research (Vol. 127, Issue 4, pp. 553–570). Lippincott Williams and Wilkins. https://doi.org/10.1161/CIRCRESAHA.120.316242
Wong, J., Piceno, Y. M., DeSantis, T. Z., Pahl, M., Andersen, G. L., & Vaziri, N. D. (2014). Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. American Journal of Nephrology, 39(3), 230–237. https://doi.org/10.1159/000360010
Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H., Bushman, F. D., & Lewis, J. D. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science, 334(6052), 105–108. https://doi.org/10.1126/science.1208344
Yan, F., & Polk, D. B. (2011). Probiotics and immune health. Current Opinion in Gastroenterology, 27(6), 496–501. https://doi.org/10.1097/MOG.0b013e32834baa4d
Yang, J., Li, Q., Henning, S. M., Zhong, J., Hsu, M., Lee, R., Long, J., Chan, B., Nagami, G. T., Heber, D., & Li, Z. (2018). Effects of Prebiotic Fiber Xylooligosaccharide in Adenine-Induced Nephropathy in Mice. Molecular Nutrition & Food Research, 62(15). https://doi.org/10.1002/mnfr.201800014
Yang, T., Santisteban, M. M., Rodriguez, V., Li, E., Ahmari, N., Carvajal, J. M., Zadeh, M., Gong, M., Qi, Y., Zubcevic, J., Sahay, B., Pepine, C. J., Raizada, M. K., & Mohamadzadeh, M. (2015). Gut Dysbiosis is Linked to Hypertension. Hypertension, 65(6), 1331–1340. https://doi.org/10.1161/HYPERTENSIONAHA.115.05315
Yu, J., Marsh, S., Hu, J., Feng, W., & Wu, C. (2016). The Pathogenesis of Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background. In Gastroenterology Research and Practice (Vol. 2016). Hindawi Limited. https://doi.org/10.1155/2016/2862173
Zhu, Q., Gao, R., Zhang, Y., Pan, D., Zhu, Y., Zhang, X., Yang, R., Jiang, R., Xu, Y., & Qin, H. (2018). Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol Genomics, 50, 893–903. https://doi.org/10.1152/physiolgenomics.00070
Zhu, W., Gregory, J. C., Org, E., Buffa, J. A., Gupta, N., Wang, Z., Li, L., Fu, X., Wu, Y., Mehrabian, M., Sartor, R. B., McIntyre, T. M., Silverstein, R. L., Tang, W. H. W., Didonato, J. A., Brown, J. M., Lusis, A. J., & Hazen, S. L. (2016). Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell, 165(1), 111–124. https://doi.org/10.1016/j.cell.2016.02.011
Zinöcker, M. K., & Lindseth, I. A. (2018). The western diet–microbiome-host interaction and its role in metabolic disease. In Nutrients (Vol. 10, Issue 3). MDPI AG. https://doi.org/10.3390/nu10030365
Zopf, Y., Reljic, D., & Dieterich, W. (2018). Dietary Effects on Microbiota-New Trends with Gluten-Free or Paleo Diet. In Medical sciences (Basel, Switzerland) (Vol. 6, Issue 4). NLM (Medline). https://doi.org/10.3390/medsci6040092
Outros artigos que lhe podem interessar